Exploring Lapis Lazuli and Ultramarine: The Journey of Blue Pigment in Art (2024)

Explore the development and impact of ultramarine blue pigment, tracing its origins from lapis lazuli to its synthetic alternatives. This article offers insights into the historical significance, production processes, and economic factors surrounding this pigment. It addresses both its historical applications and its role in modern art, providing a comprehensive overview for artists, historians, and enthusiasts. Through examining the transition from natural to synthetic forms, readers gain a deeper understanding of ultramarine blue's enduring value in the artistic world.

What is Ultramarine Blue

Ultramarine is a blue pigment consisting primarily of a zeolite-based mineral containing small amounts of sulfur. Ultramarine is one of the most complex of the mineral pigments, composed of the blue mineral lazurite, which is the major component of the rare and semi-precious stone lapis lazuli. (Eastaugh, 2004) The mineral occurs in nature as a product of limestone metamorphism. It is typically associated with calcite, pyrite, diopside, humite, forsterite, hauyne, and muscovite minerals, sometimes found in lava as a by-product of volcanic eruptions. (Schumann, 2008)

The Complex Composition of Ultramarine Blue

Ultramarine pigments are sodium aluminum silicates of the composition Na8Al6Si6O24.Sx(Na-rich) or Na, _yAl6_ySi6+yO.Sx (Si-rich). Small sulfur-containing anions (e.g., S3 or S2) are bound as chromospheres in the interstices of the crystal lattice. Depending on the composition, blue, red, green, or violet pigments can be obtained, the hue being altered by varying the amount of silica. (Weldon, 2009) Ultramarine pigments have high heat resistance, but their universal use in paint is limited because of their poor hiding power and weather resistance. Special ultramarine pigments are coated with silica to reduce ultramarine’s susceptibility to acid and improve its weather resistance.

Synthetic ultramarine is a more vivid blue than natural ultramarine because the particles of synthetic ultramarine are more finely divided and uniform and contain fewer impurities than natural ultramarine or lapis lazuli. (Eastaugh, 2004)

Origin of the Name “Ultramarine”

The name derives from the Middle Latin ultramarinus, literally “beyond the sea,” because it was imported from Asia by sea. (Etymology) In the past, it has also been known as azzurrum ultramarine, azzurrum transmarinum, azzuro oltramarino, azur d'Acre, pierre d'azur, Lazurstein. Current terminology for ultramarine include natural ultramarine (English), outremer lapis (French), Ultramarin echt (German), oltremare genuino (Italian), and ultramarino verdadero (Spanish). The first recorded use of ultramarine as a color name in English was in 1598. (Maerz, 1930)

Before the nineteenth century, the word ultramarine designated the pigment derived from natural lazurite. After the mid-nineteenth century, it signified the synthetic analog of the mineral lazurite. Today, natural ultramarine is distinguished by the names lapis lazuli, lazurite, or genuine ultramarine.

Exploring Lapis Lazuli and Ultramarine: The Journey of Blue Pigment in Art (1)

A specimen of lapis lazuli that has a high content of lazurite, the blue-colored mineral in the stone.

The History Of Ultramarine Blue

Lapis lazuli has been mined for centuries from a location still in use in the mountain valley of Kokcha, Afghanistan. First mined 6,000 years ago, the rock was transported to Egypt and later to Europe, where it was used in jewelry and paint.

The pigment was used most extensively during the fourteenth through sixteenth centuries, as its brilliance complemented vermilion in Italian panel paintings. It was valued chiefly because of its brilliancy of tone and its inertness to light exposure, oil, and lime. It is, however, extremely susceptible to dilute mineral acids.

European artists used the pigment sparingly, reserving their highest-quality blues for the robes of Mary and Christ. As a result of its high price, artists sometimes economized by using a cheaper blue, such as azurite, for the underpainting.

The rising demand for ultramarine eventually led to the development of artificial ultramarine. In 1814, Tassaert observed the formation of a blue compound similar to ultramarine, if not identical to it, in a lime kiln at Saint Gobain, which caused the Societé pour l’Encouragement d’Industrie to offer, in 1824, a prize for the artificial production of the precious color. Processes were devised by Jean Baptiste Guimet (1826) and by Christian Gmelin (1828), then professor of chemistry in Tübingen; but while Guimet kept his process a secret, Gmelin published his and was awarded the prize.

Exploring Lapis Lazuli and Ultramarine: The Journey of Blue Pigment in Art (2)

After its commercial introduction, synthetic ultramarine was an inexpensive pigment used in many consumer products, such as laundry soap, a process known as ‘laundry bluing.’Laundry bluing was used from the late 18th to the mid-19th century. Reckitt’s Blue, introduced in the 1850s, contained synthetic ultramarine blue. It was sold as a powder, block, or coated on paper.

Exploring Lapis Lazuli and Ultramarine: The Journey of Blue Pigment in Art (3)Exploring Lapis Lazuli and Ultramarine: The Journey of Blue Pigment in Art (4)
Natural ultramarine blue (laps lazuli) in partial cross-polarized microscope enlarged 64 times.Synthetic ultramarine blue in cross-polarized microscope enlarged 64 times.


Production of Natural and Synthetic Ultramarine Blue Pigment

Natural Ultramarine

Natural ultramarine is a problematic pigment to grind by hand, and grinding and washing only produce a pale blue powder except for the highest quality mineral. The coarser pieces of lapis lazuli are pulverized, heated to redness, and immediately dipped into water, then very finely ground. The natural ultramarine powder was sometimes treated with dilute acetic acid to eliminate calcium carbonate.

At some point in the late medieval period, a method came into use, described by the fifteenth-century artist Cennino Cennini, that produced a deeper blue pigment. After grinding the mineral to a fine powder, it was next well incorporated with a mixture of equal parts of resin, wax, linseed oil, and Burgundy pitch. The resulting mass was wrapped in a cloth and then kneaded in a dilute lye solution. The blue particles dispersed into the lye solution, while the impurities remained in the mass. This process was repeated, with each successive extraction generating a lower-quality pigment. The final extraction, consisting primarily of colorless material and a few blue particles, resulted in ultramarine ash prized for its grayish-blue transparent hue. The quantity of genuine ultramarine obtained by this process amounts to two to three percent.

Synthetic Ultramarine

Gmelin first made synthetic ultramarine on a very small scale in 1822, but not before 1828 was ultramarine industrially obtained by Guimet at Lyons. In Germany, the first manufacturers of ultramarine were established at Wermelskirchen, in 1836, by Dr. Leverkuss, and at Nuremberg, in 1838, by M. M. Zeltner and Leykauf. France and Germany are the countries where this industry was most developed.

The raw materials used to make synthetic ultramarine are (1) iron-free alumina silicate, kaolin, or some other kind of pure china clay; (2) anhydrous sodium sulfate (Na2SO4); (3) anhydrous sodium carbonate (Na2CO3); (4) sulfur; and (5) finely-ground charcoal or relatively ash-free coal. (von Wagner, 1872)

Kaolin is generally used, or white clay, the composition of which contains silica and alumina as nearly as possible in the proportion of SiO2:Al2O3 demanded by the formula assigned to ideal kaolin. Small quantities of calcium and magnesium carbonate do not appear to have an adverse effect, but iron oxide should not exceed one percent. The composition of the clay should approach as nearly as possible to the formula Si2O7Al2; the silica may be combined or partly free. The clay is washed with water and treated in the same manner as for making porcelain; it is next dried, calcined, and ground to a very fine powder.

The raw materials are mixed well and placed in a reverberatory furnace. The result is the formation of a green substance, which absorbs oxygen very rapidly so that during the cooling of the mass in the oven, the majority converts to blue ultramarine.

How Ultramarine Blue Paint is Made

Optimum color is obtained from a paint in which the pigment is present as primary particles rather than larger agglomerates. Artificial ultramarine pigments range in primary particle size from one to five microns. It would not be easy to handle a dry powder comprising such fine particles, but as supplied by manufacturers, the pigment is in the form of larger soft agglomerates. These agglomerates must be broken down into the binding medium in a process called ‘dispersion.’

As supplied by the pigment manufacturer, ultramarine pigment particles are surrounded by air. To disperse the pigment, this air must be displaced by the medium, whether it is water, oil, or resin. This process is called ‘wetting,’ and various additives (dispersants) are used to improve the ultramarine's compatibility with the medium it is being dispersed. Ultramarine pigments are ‘hydrophilic,’ meaning they are most compatible with aqueous mediums. Ultramarine pigments disperse pretty quickly in the majority of oleophilic (literally, “oil loving”) mediums; however, pigment manufacturers produce a range of ultramarine pigments with an oleophilic surface coating (Holiday). Ultramarine pigments are often coated with alkyl and polyethylene glycols to maximize wetting in non-polar binding mediums, such as oils (Gelest).

Until the development of dispersants in the twentieth century, other ingredients were added to oil paints to help wet and deflocculate pigments. Unrefined vegetable oils with a high lecithin content were typically used as wetting agents. Other natural products of lower or high molecular weight (cashew nut liquid, rosin, gum arabic, milk and egg proteins, and natural resins) also contributed to pigment stabilization. Shortly after introducing synthetic pigments, additives (metal soaps and other fatty acid derivatives) were used to disperse pigments (Forio, 2004).

The hydrophilic property of ultramarine pigments causes poor wetting of its particles, resulting in stiff paste that ‘slumps’ after some time by flowing and leveling out when mixed with vegetable oils, such as linseed. Adding small amounts (15–25%) of linseed oil paint, poppy, or walnut oil can reduce the stringiness and add a buttery consistency to ultramarine. Oils with high free fatty acid content also improve wetting and reduce the slumping effect when grinding the pigment in oil.

The Compatibility and Lightfastness of Ultramarine Blue Pigment

Ultramarine exhibits excellent lightfastness and resistance to alkalis but is affected by dilute mineral acids. In certain conditions, the color has been noted to fade, a condition known as ‘ultramarine sickness.’ As paint ages, it can become brittle and powdery due to the degradation of the binding medium, which is often referred to as ‘chalking.’ The patchy whitening of ultramarine paints, or ultramarine sickness, is believed to be caused by the disintegration of the binding medium, while the ultramarine particles themselves remain unchanged. The binding medium around the pigment particles in the paint scatter the light, causing the paint surface to appear patchy and whitish. This is a characteristic of oil paint since ultramarine is mostly well preserved in waterborne tempera. Poor wetting of the pigment particles by the oil contributes to ultramarine sickness. Under acidic conditions, ultramarine pigment particles have been known to lose their colors due to the loss of sulfur, but this is only in the case of fresco paintings or paintings outdoors (Stoner, 2013).

Where to Buy

Oil Paints

Pigments

Lazurite (Lapis Lazuli) Oil Paint

Lapis Lazuli Pigment

Ultramarine Blue (Green Shade) Oil Paint

Ultramarine Blue (Green Shade) Pigment

Ultramarine Blue (Red Shade) Oil Paint

Ultramarine Blue (Red Shade) Pigment

References

(Eastaugh, 2004) Eastaugh, Nicholas, et al., 2004, The Pigment Compendium: Optical Microscopy of Historical Pigments. Oxford: Elsevier Butterworth-Heinemann, p. 219, ISBN 0-7506-4553-9.

(Schumann, 2008) Schumann, Walter, 2008, Minerals of the World. New York: Sterling, p. 216, ISBN 978-1-4027-5339-8.

(Weldon, 2009) Weldon, Dwight G., 2009, Failure Analysis of Paints and Coatings, p. 41.

(Eastaugh, 2004) )Eastaugh, Nicholas, 2004, Pigment Compendium: Optical Microscopy of Historical Pigments. Taylor & Francis, p. 45.

(Etymology) “ultramarine.” Online Etymology Dictionary. Retrieved: June 6, 2013.

(Maerz, 1930) Maerz, Aloys John, and Paul, Morris Rea, 1930, A Dictionary of Color. New York: McGraw Hill, p. 206.

(von Wagner, 1872) von Wagner, Johann Rudolph, 1872, A Handbook of Chemical Technology. Sir William Crookes, translator, and editor, p. 264–267.

(Holiday) Dispersion of Ultramarine Pigments. Holliday Pigments. Retrieved: June 6, 2013.

(Gelest) ML Surface Modification. Gelest. Retrieved: June 9, 2013.

(Forio, 2004) Florio, John J.; Miller, Daniel J., 2004, Handbook of Coatings Additives, p. 549.

(Stoner, 2013) Stoner, Joyce Hill, 2013, Conservation of Easel Paintings, p. 226.

See also Patton, Temple C., 1973, Pigment Handbook: Properties and Economics, Volume 1. New York: Wiley-Interscience, p. 410–415.

Exploring Lapis Lazuli and Ultramarine: The Journey of Blue Pigment in Art (2024)
Top Articles
Becoming a Forensic Pathologist - Education & Certification
How to become a forensic pathologist
Poe T4 Aisling
The Largest Banks - ​​How to Transfer Money With Only Card Number and CVV (2024)
Inducement Small Bribe
Www.craigslist Virginia
Jazmen Jafar Linkedin
Gt Transfer Equivalency
What is the difference between a T-bill and a T note?
Craigslist Pikeville Tn
Wisconsin Women's Volleyball Team Leaked Pictures
Job Shop Hearthside Schedule
Binghamton Ny Cars Craigslist
Simon Montefiore artikelen kopen? Alle artikelen online
Gma Deals And Steals Today 2022
Guidewheel lands $9M Series A-1 for SaaS that boosts manufacturing and trims carbon emissions | TechCrunch
Buff Cookie Only Fans
Tcu Jaggaer
Justified Official Series Trailer
Paradise leaked: An analysis of offshore data leaks
使用 RHEL 8 时的注意事项 | Red Hat Product Documentation
50 Shades Of Grey Movie 123Movies
Richland Ecampus
Daytonaskipthegames
Phoebus uses last-second touchdown to stun Salem for Class 4 football title
Conan Exiles Sorcery Guide – How To Learn, Cast & Unlock Spells
Busted News Bowie County
Evil Dead Rise Showtimes Near Pelican Cinemas
Soulstone Survivors Igg
Www.craigslist.com Austin Tx
Strange World Showtimes Near Savoy 16
Die 8 Rollen einer Führungskraft
Ewg Eucerin
Blush Bootcamp Olathe
Transformers Movie Wiki
Weekly Math Review Q4 3
Craigslist Neworleans
Aveda Caramel Toner Formula
Soulstone Survivors Igg
Ise-Vm-K9 Eol
Nearest Ups Office To Me
Aita For Announcing My Pregnancy At My Sil Wedding
Ross Dress For Less Hiring Near Me
The Listings Project New York
Alpha Labs Male Enhancement – Complete Reviews And Guide
Fluffy Jacket Walmart
Model Center Jasmin
Diamond Desires Nyc
303-615-0055
Arnold Swansinger Family
Lux Nails & Spa
Intuitive Astrology with Molly McCord
Latest Posts
Article information

Author: Delena Feil

Last Updated:

Views: 6380

Rating: 4.4 / 5 (65 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Delena Feil

Birthday: 1998-08-29

Address: 747 Lubowitz Run, Sidmouth, HI 90646-5543

Phone: +99513241752844

Job: Design Supervisor

Hobby: Digital arts, Lacemaking, Air sports, Running, Scouting, Shooting, Puzzles

Introduction: My name is Delena Feil, I am a clean, splendid, calm, fancy, jolly, bright, faithful person who loves writing and wants to share my knowledge and understanding with you.